Calculation Policy

Combining objects

Tens frames to Add Within 10 (and above)

6

Part part whole diagrams

6 + 1 = 7 (Year 1)

Number bonds

- bonds to 10
- bonds to 20
- bonds to 100

Number lines

Adding units

20 + 3 = 23 (Year 2)

3

20

23

Adding tens and units

Hundred Squares

Add	ing t	ens		е	.g.	24 +	10 =	34		47 + 20 = 67
Adding tens and units e.g.					e.g.	41 + 12 = 53			72 + 24 = 96	
						(Ó Ì	2		20 [′] 4
1	2	3	4	5	6	7	8	9	10	
11	12	13	14	15	16	17	18	19	20	
21	22	23	24	25	26	27	28	29	30	
31	32	33	34	35	36	37	38	39	40	
41	42	43	44	45	46	47	48	49	50	
51	52	53	54	55	56	57	58	59	60	
61	62	63	64	65	66	67 (68	69	70	
71	72	73	74	75	76	77	78	79	80	
81	82	83	84	85	86	87	88	89	90	
91	92 (93	94	95	96	97	98	99	100	

Lower KS2

Bridging

37 + 8 = 37 + (3+5) = 37 + 3 = 40 40 + 5 = 45

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 Partitioning

76 + 32 = 108 70 6 30 2

70 + 30 = 100 6 + 2 = 8 100 + 8 = 108

245 + 336 = 581 200 + 300 = 500 40 + 30 = 500 40 + 30 = 70 5 + 6 = 11500 + 70 + 11 = 581

Part Part Whole Progressing to Bar Method

Column Addition

Starting with the units and exchanging (not borrowing)

Н	Т	U
2	3	6
<u>+ 1</u>	4	7
3	8	3
	1	

Upper KS2

Using decimals and starting with the smallest unit

	Η	Т	U	•	t	h
	1	3	4		3	6
+	7	4	2		4	5
	8	7	6		8	1
					1	

Adding multiples of 10, 100, 1000 etc using place value

e.g.

 $14\underline{6}7+\underline{30}=1497$

 $2\underline{6}54 + \underline{300} = 2\underline{9}54$

 $5 \underline{4} 3 2 1 + \underline{4 0 0 0} = 58321$

Subtraction KS1

Taking away

Tens Frame to Subtract Within 10

Part Part Whole

Number bonds – subtraction facts

- bonds to 10 subtraction facts
- bonds to 20 subtraction facts
- bonds to 100 subtraction facts

Hundred Squares

Subtracting tens	e.g	34 - 10 = 24	67 - 20 = 47

Subtracting tens and units e.g 53 - 12 = 41 96 - 24 = 72 10^{2} 20 4

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	32	64	55	6	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Lower KS2

Bridging

54 - 7 =54 - (4+3) =54 - 4 = 5050 - 3 = 47

-4 ·З ŢĹ

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

Partitioning

98 - 32 = 66 $30^{2} - 2$ 98 - 30 = 68 68 - 2 = 62 98 - 32 = 66 588 - 336 = 252 $300^{6} - 6$ 500 - 300 = 200 80 - 30 = 50 8 - 6 = 2 200 + 50 + 2 = 252

Part Part Whole and Exchanging

Understanding 530= 500 + 20 + 10 ready for column subtraction with exchanging.

Column Subtraction

Starting with the units and exchanging (not borrowing)

ΗΤU

Solving missing number problems using bar representation of problem

Upper KS2

Using decimals and starting with the smallest unit

H T U . t h ⁶7⁷ ¹3 ³/4 . ¹3 6 <u>- 1 4 2 . 4 5</u> <u>5 9 1 . 9 1</u>

Subtracting multiples of 10, 100, 1000 etc using place value

e.g.

- $1 4 \underline{6} 7 \underline{30} = 1 4 \underline{3} 7$
- $2\underline{6}543 \underline{3000} = 2\underline{3}543$
- $5 \underline{4} 3 2 1 \underline{4 0 0 0} = 5 \underline{0} 3 2 1$

Bar Method to solve increasing complex questions

e.g.

Sasha, Amy and Hannah are three friends. The sum of Amy and Hannah's age is 54 years. The sum all three ages is 83 years. Amy is 21 years old. Who is the oldest?

Hannah is the oldest at 33 years old.

Multiplication

<u>KS1</u>

Early tables, counting and chanting 1x, 2x, 10x and 5x

Sequences

1, 2, 3, 4, 5 . . . 2, 4, 6, 8, 10 . . . 5, 10, 15, 20, 25 . . . 10, 20, 30, 40, 50 . . .

3 lots of 5 = 15 3 x 5 = 15

Using a number line (repeated addition)

4 x 3 = 12

<u>Arrays</u>

Use to explore commutative law

4 x 5 = 20

5 x 4 = 20

\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc

Lower KS2

Grid method

60 + 12 = 72

TU x TU

200 + 100 + 20 + 10 = 330

- **Connections**
- X2 Doubling
- X4 Double and double again

X8 – Double, double and double again

X20 – Multiply by 10 and double

- X5 Multiply by 10 and halve
- X200 Multiply by 100 and double

Short cut tricks for mental calculation e.g. 13 x 8 = Double 13 = 26 Double 26 = 52 Double 52 = 104

Multiplying by 10, 100, 1000 etc Place value sliders are useful for illustrating this.

2 x 10 = 20 2 x 100 = 200 2 x 1,000 = 2,000

0.45 x 10 = 4.5 0.45 x 100 = 45 0.45 x 1,000 = 450

Linking multiplication tables e.g.

7 x 3 = 21 700 x 3 = 2,100 7,000 x 3 = 21,000

Written Method Alongside recalling tables to 12 x 12

TU x U T U 3 6 <u>X 4</u> 2 4 (6 x 4) <u>1 2 0</u> (30 x 4) 1 4 4 Leading to...

Short multiplication

Th	Н	Т	U
	6	3	7
<u>X</u>			9
5	7	3	3
	3	6	

6 x 4 = 24
4 - units in the units column
20 – 2 in the tens column
30 x 4 = 120 Remember to add the 2 tens from 6x4
120 + 20 = 140
100 – 1 in hundreds column
40 - 4 in tens column

Upper KS2

With decimals...

		4	0	•	2	8
<u>X</u>						6
	2	4	1		6	8
			1		4	

Long Multiplication

Th H T U 1 5 9 X 2 8 1 2 7 2 (159 x 8) $\mathcal{A} \mathcal{I}$ 3 1 8 0 (159 x 20) $\mathcal{I} \mathcal{I}$ $\mathcal{I} \mathcal{I}$ 4 4 5 2 1

<u>x</u>		3	7	. 2 2	5 9
	3	3	5	. 2	5
		6	2	4	
	7	4	5	. 0	0
	1		1		
1	0	8	0	. 2	5
		1			

Using the same method for up to 4 digit x 4 digit

Facts

Factors

e.g. 12 1, 2, 3, 4, 6 and 12

Common factors

e.g. 12	<u>1, 2, 3</u> , 4, <u>6</u> and 12
30	<u>1, 2, 3,</u> 5, <u>6</u> , 10, 15 and 30

Factor Trees

So 70 = 7 x 2 x 5

Prime numbers

The only factors are 1 and itself e.g. 2, 3, 5, 7, 11, 13, 17 etc

Square numbers

 $2^{2} = 2 \times 2 = 4$ $3^{2} = 3 \times 3 = 9$ $4^{2} = 4 \times 4 = 16$ etc.

Cubed numbers

 $2^{3} = 2 \times 2 \times 2 = 8$ $3^{3} = 3 \times 3 \times 3 = 27$ $4^{3} = 4 \times 4 \times 4 = 64$ etc.

Division

<u>KS1</u>

Sharing practically

10 shared between 2

5 each

<u>Groups of</u> 10 shared into 2 *equal* groups

10 ÷ 2 = 5

Remainders

Sharing and grouping with arrays

\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc

 $\begin{array}{c} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$

 $12 \div 3 = 4$ or $12 \div 4 = 3$

Lower KS2

Repeated subtraction with remainders...

15 ÷ 4 = 3 r 3

Dividing multiples of 10, 100, 1000 etc Place value sliders are useful for illustrating this. e.g. $80 \div 4 = 10 \times (8 \div 4)$

$$= 10 \times 2$$

= 20
e.g. 270 ÷ 3 = 10 x (27 ÷ 3)
= 10 x 9
= 90
e.g. 800 ÷ 4 = 10 x (8 ÷ 4)
= 10 x 2
= 20

Written methodTU ÷ UChunkingRepeated subtraction as chunking

 $72 \div 4 = 18$ 7 2 - 4 0 (10 x 4) 3 2 - 3 2 (8 x 4) 0Leading to . . .

Short Division (Bus Stop Method)

 $72 \div 4 = 18$ $4 \overline{)7^{3}2}$

With remainders . . .

74 ÷ 4 = 18 r 2

Upper KS2

Chunking 7 4 $- 4 0 (10 \times 4)$ 3 4 $- 3 2 (8 \times 4)$ 2 4 10 + 8 = 18 2 10 + 8 = 18 2 10 + 8 = 18

Short Division

| 8 r 2 4) 7 ³ 4

HTU ÷ U, HTU ÷ TU and ThHTU ÷ U using Short Division

I 6	4 7 r 2
11) 1 7 ⁶ 6	9) 1 3 ⁴ 2 ⁶ 5

Interpreting remainders in context

e.g. A classroom was set up in tables of 6. There were 27 children in the class. How many tables of 6 would be needed?

 $27 \div 6 = 4 r 3$

Therefore 5 tables needed, 4 tables of 6 and another table with only 3 children on.

Remainders as fractions and decimals

Fractions

57 ÷ 4 = 14 ¹/₄

$$| 4 r |$$

(4) 5 ¹7
57 ÷ 4 = 14 with 1 out of 4 left over
57 ÷ 4 = 14 ¹/₄

Decimals

4) 5 ¹ 7 . ¹0 ²0

• **370.6** ÷ 4 = 92.65

<u>9 2.6</u>5 **4)37¹0.²6²0**

Beginning with recapping chunking

853 ÷ 24 = 35 r 13

Leading to . . .

Formal Long Division

$$4259 \div 18 = 236 \text{ r } 11$$

$$2 3 6 \text{ r } 11$$

$$18) 4 2 5 9$$

$$- 3 6 \downarrow \\ 6 5 \\ - 5 4 \downarrow \\ 1 1 9$$

$$- 108 \\ 1 1$$

With decimals

57.75
$$\div 35 = 1.65$$

 1.65
 $35\overline{)57.75}$
 $-35\overline{4}$
 22.7
 -21.0
 1.75
 -1.75
 0

Fractions

Identifying fractions of shapes Identifying equal parts within fractions

Fractions in the Bar Method

Finding fractions of numbers

Using equipment to identify fractions of numbers

 $\frac{1}{2}$ of 10 = 5

Lower KS2

Adding and subtracting fractions with the same denominator

<u>Upper KS2</u>

Bar method to represent increasing complex fraction, ratio and percentage problems.

e.g.

55 Year 4 students were invited to test two new computer games. 5/11 of the students preferred Galaxy Goo. The others preferred Planet Zak. How many students preferred Planet Zak?

so 6/11 of the children like Planet Zak. 6/11 of 55 = 30 30 children liked Planet Zak e.g.

Grace has jazz and hip hop songs on her iPod in the ratio of 8:3. If Grace has 9 hip hop songs, how many Jazz songs does she have?

9÷3=3

Each portion of the ratio = 3

8 x 3 = 24 Therefore Grace has 24 jazz songs on her iPod.